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1. INTRODUCTION 

All non-linear differential equations (DES) can be connectionally divided into three types: exactly 
solvable, partially solvable and those that have no analytical solution. This classification does not make 
it possible to give definitions of these classes, which in itself is a difficult problem. For example, even 
for exactly solvable Hamilton systems (often termed integrable), a distinction is made between exactly 
solvable DES in quadratures, entirely integrable systems and complete algebraic integrability [l-3]. 

The present paper will examine the second of the above types of DE, namely a DE not belonging 
to the first type but having a certain set of special solutions. It should be noted that all the methods 
discussed can be used to find exact solutions of DES of the first type. However, for DES of the first type 
there are more general methods of finding analytical solutions than in the case of DES of the second 
type, for example, the method of the inverse scattering transform. 

Since, after formulating the mathematical model, the question arises of the existence of analytical 
solutions, the natural requirement for methods of finding these solutions is growing. In recent years a 
number of studies have appeared that lay claim to new methods for solving non-linear DES (both ordinary 
and partial). However, most of them are essentially only certain modifications of the same approach. 
In our opinion most of the methods proposed for finding analytical solutions can be classified within 
the framework of a single approach, which has been developed over the past 120 years, starting with 
the celebrated work of S. V. Kovalevskaya, which dealt with the problem of the motion of a rigid body 
in a gravitational field. 

One of the most remarkable properties that can be possessed by an ordinary differential equation 
(ODE) is the Painleve property, which corresponds to the general solution of an ODE without critical 
movable singular points. Essentially, the presence of this property is a criterion for the existence of a 
general solution of the ODE. 

This property was noted as far back as the nineteenth century in work by Briot and Bouquet [4]. Then 
Fuchs and Poincare used this fact to analyse a first-order ODE [4]. However, the first researcher to use 
the Painleve property to solve mechanics problems was S. V Kovalevskaya, who found a new case 
(different from the cases of Euler and Lagrange) of the exact solution of the problem of the motion 
of a rigid body in a gravitational field, requiring the general solution to be a meromorphic function [5 1. 
The answer to the question formulated by Kovalevskaya enabled the parameters of the mathematical 
model to be found for the case of the exact solution. It can be said that Kovalevskaya found the values 
of the parameters when the system of equations describing the motion of a rigid body has the Painleve 

property. 
Soon after Kovalevskaya’s work, Painlevt attempted to investigate second-order ODES having the 

form 

YU = NY, yz. e> (1.1) 

where R is a function that is algebraic with respect to y and y, and locally analytical with respect to t. 
The main aim of his investigation was to find all irreducible ODES of a given type, the general solutions 
of which have no critical movable singlular points, and to search for ODES that define new functions. 
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Among ODES of type (l.l), Painleve and his students found 50 canonical ODES (a list of them can be 
found in [6]), the general solutions of which had no critical movable singular points, and here the 
solutions of 44 of the ODES of this list were expressed in terms of the solutions of linear ODES and 
special functions known at that time. To describe the solutions of the remaining six irreducible ODES, 
Painleve and Hambier introduced new special functions which they called transcendents. The Painleve 
transcendents are not classical functions in the usual sense, since they can be defined only as solutions 
of non-linear second-order ODES [7,8] in view of the fact that the solutions of the Painleve equations 
have a considerably transcendental dependence on the integration constants. 

Interest in the Kovalevskaya-PainlevC methods arose after work by Ablowitz, Ramani and Segur 
[9, lo], who noted that exactly solvable non-linear partial differential equations (PDEs), using traveling- 
wave variables, self-similar variables, etc., can be reduced to equations having the Painleve property. 
In this context, they suggested a hypothesis concerning the Painleve property, which can be formulated 
as follows. If any reduction of a non-linear PDE to an ODE results in an equation having the Painleve 
property, then such a non-linear PDE is exactly solvable. Unfortunately, the practical realisation of this 
hypothesis is inconvenient, and a modification of the application of this hypothesis to non-linear PDEs 
was proposed in [ 111. 

The essence of this modification is as follows. Suppose the following non-linear DE is given 

Its solution is sought in the form 

E(u, u,, . . . . X, t)=O (1.2) 

I( = z-p(uo + U]Z + u*zz +. . .) (1.3) 

where z 5 Z(X, t) is a new function, Uj = Uj(zx, z,, . . .) are coefficients which depend on the derivatives of 
the function z(x, t), andp is a number that is determined by equating to zero the expressions with the 
lowest power of z(x, t) after substituting a series into the DE. The coefficients ui are found successively 
by equating to zero the expressions with different powers of the function z(x, t) after substituting a series 
into the DE. 

For an exactly solvable DE, arbitrary coefficients u, appear in expansion (1.3), the number of which 
is equal to the order of the DE. 

The success of the method was mainly due to the fact that, assuming that Uj = 0 for all j L p, for an 
exactly solvable DE it is possible to construct Backlund transformations and Lax pairs [12-151. However, 
it turned out that truncated expansions 

u = ugz -p+u,z-p+‘+...+up (1.4) 

are also effective in finding special solutions of DES, which was demonstrated [16-331 in variose 
modifications of the application of the method of Painleve expansions to find solutions of a whole series 
of non-linear DES. For example, using formula (1.4), special solutions of the generalized Kuramoto- 
Sivashinsky equation and the Burgers-Korteveg-de Vries equation for specific values of the 
parameters of these equations were found [23, 241. The dependence of the coefficients ui on the 
derivatives of the function+, t) in formula (1.4) was found in this case after substituting (1.4) into the 
initial DE and subsequently equating to zero expressions with like powers of the function Z(X, t). As a 
result of the substitution, an overdetermined system of DES with respect to z(x, t) is found, which is 
converted into an algebraic system of equations if the following is put in it 

2(x, t) = I+ c, exp(kr -of) (1.5) 

where cl, k and o are constants, which are found from the algebraic system of equations. Since the uk 
in Eq. (1.4) depend on the derivatives of the functionz(x, t), the coefficients in Eq. (1.4) are transformed 
in this case into the product of constants multiplied by exponential functions obtained from the 
differentiation of expression (1.5). 

On substituting expression (1.5) into Eq. (1.4), the latter is transformed into a relation consisting of 
the sum of powers of the expressions 

a0 exp(kx - ot) 

’ = 1 +c, exp(kx-of) 
(14 
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which was used by some researchers to find exact solutions [34,35]. In a number of cases this sum can 
be represented in the form of the sum sech(fcs + at) and cosech(lar + ot), which likewise has often been 
used to find exact solutions of non-integrable equations [36-381. 

It should also be noted that relation (1.6) can be converted to the form 

(1.7) 

where b is an arbitrary constant. Therefore, the solution of non-linear DES can also be sought in the 
form of a power series expansion of hyperbolic tangents [39]. 

Another of the methods involves finding the solution of a non-linear DE in the form of the sum of 
a power series of functions that are solutions of the Riccati equation [17, 331 and the equation for an 
elliptic function [25,31,40], and here these expansions are essentially defined in the same way as Painleve 
expansions. Thus, most methods for finding exact solutions of non-linear DES are essentially based on 
a method directly connected with the Painleve approach to the analysis of non-linear DES. 

It should be noted that the search for solutions in the form of the sum of hyperbolic tangents, secants 
and cosecants gives only a certain set of special solutions, generally without exhausting all possible 
solutions. The full set of special solutions, which has a corresponding mathematical model, can only 
be found by using the substitution (1.4) and analysing the overdetermined system of equations for 
z(x, t). This analysis (often fairly complex) enables all the functions to be found for which the initial 
mathematical model allows of the conventional Painleve property. 

2. SOLUTIONS OF A NON-LINEAR FIFTH-ORDER 
DIFFERENTIAL EQUATION IN THE FORM OF 

SOLITARY WAVES 

Special solutions of many non-linear PDEs encountered in describing physical effects have now been 
obtained. One of the few PDEs not studied so far, encountered in describing long waves on water, has 
the form [4] 

u, + u, + c,uu, + cau, + cau,u, + c.+4u_ + csu_ = 0 (2.1) 

Special cases of this equation have been analysed in a number of studies. For example, exact solutions 
of this equation have been found [26] in the form of solitary waves with c3 = c4 = 0. In the case when 
c3 = c4 = cg = 0, Eq. (2.1) takes the form of the well-known Korteveg-de Vries equation. 

For convenience of calculations, we use the change of variables 

6Oc4 b a=-, = 6Oc,cs 

cs + 2c, c&j +2c,)’ 
cs #-2c4, cs $0 

(2.2) 

Then Eq. (2.1) is reduced to the form 

u, + u_ - auu, - 2(30 - a&u, - buu, + u, = 0, ab f 0 (2.3) 

We will show that (2.3) is not an exactly solvable equation. For this purpose, we will apply the Painleve 
test to it [ll]. The Fuchs indices (i.e. the numbers of arbitrary coefficients in expansion (1.3)) are found 
as the roots of an equation which depends on the parameter a: 

(r+l)(r-6)(r3 -15r2+(86-a)r-120)=0 (2.4) 

We will be interested only in integer solutions of Eq. (2.4), since for non-integer Fuchs indices the 
equation does not satisfy the requirements of the Painleve test. Only two values of the parameter a 
exist for which all Fuchs indices are integers: 



858 N. A. Kudryashov and M. B. Sukharev 

(I= 18&r=-3,-2,-1,6,20 
(2.5) 

a= 12:r= -1,4,5,6,6 

However, when checking the correspondence of the Fuchs indices to the numbers of arbitrary 
coefficients of Laurent’s expansion (1.3) of the general solution of Eq. (2.3) close to a movable singular 
point, in both cases the impatibility conditions are unsatisfied. This means that at least one of the arbitrary 
coefficients of expansion (1.3) is not such, i.e. the general solution of Eq. (2.3) cannot be represented 
in the form (1.3). Consequently, Eq. (2.3) fails the Painleve test, i.e. it cannot be classified as an exactly 
solvable equation. 

We will seek possible special solutions by two methods: in the form of a polynomial in functions 
satisfying the system of Riccati equations [17], and in the form of a polynomial in a function satisfying 
the non-degenerate elliptic equation [30,31]. 

The method in [17] essentially consists of the following: let the functions z(8) and o(8) satisfy the 
system of Riccati equations 

o’= -07, z’= -22 po 
-?+I 

The general solution of system (2.6) has the form 

(2.6) 

0(e) = 
1 

T(6) = 
cr sh8+c2ch8 

po/K+c,che+C2She’ PO/ K+c, ch8+c2sh8 
(2.7) 

Assuming c2 = 0 and cl = l/K, we obtain elementary solitary waves (a soliton and a kink respectively) 

0(e) = 
K 

T(e) = 
she 

che+po ’ 
(2.8) 

che+p, 

System of equations (2.6) admits of the first integral 

(2.9) 

For all values of us = 21, the functions o and 2 have simple movable poles, and in the case when 

CL0 = -+l the function u has a second-order pole. To eliminate the change in the order of the poles for 
the function o, a value K = d= is selected and system of equations (2.6) is considered with the 
condition that 

I-r2-2Jlo+(J2=0; p--J+ 

J- I+-1 

$#I (2.10) 

The solution of Eq. (2.3) is sought in the form of a polynomial in o and 2, evaluated at the point 
8 = e(t), 8’ # 0. To simplify subsequent calculations, we will assume that 

e=k{, 5=x-ct, k=const, c=const (2.11) 

Equation (2.3) admits of a solution in the form of a second-degree polynomial in (a, z). Since all powers 
of z higher than unity can be eliminated using relation (2.10), the solution of Eq. (2.3) will have the form 

u = O! + p0(e) + v(e) + b(e)qe) + cp0(eJ2 (2.12) 

To simplify subsequent calculations, we will assume that all the coefficients are constants. 
We substitute expression (2.12) into Eq. (2.3) and then eliminate all the derivatives of (0,~) and powers 

of z higher than unity by means of relations (2.6) and (2.10). 
Equating the coefficients in the expression obtained for different powers of (o, 2) to zero, we obtain 

a final system of algebraic equations with unknowns a, 0, y, h, cp, p, k and c. 
The solving of this system of equations can be divided into two steps at the first step we assume 

p(u2 - 1) f 0 and obtain solutions of Eq. (2.3) in the form of a combination of waves of type (2.8), and 
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at the second step we assume p = 0 and find solutions of Eq. (2.3) in the form of a polynomial in sech 
0 and the 8. All possible solutions of the form (2.12) can be grouped into three families determined by 
the coefficients with the highest powers of o and f: 

2) q+ “z-f, 3) ‘P=k2, h=O (2.13) 

Note that the solutions of the second family of (2.13) can be obtained from the solutions of the first 
family of (2.13) by making the replacement ‘t + -z, and therefore solutions of the second family of 
(2.13) will not be considered further. 

At the first step we find a single solution from the first family of (2.13) that holds for an arbitrary 
value of the parameter a 

12-b+ak’ 
U= Ao-;v, A,= 

12a ’ u = 

l+p,che-,&-lshe 

(PO +cw* 
(2.14) 

This is a two-parameter solution with the parameters k and po, which holds for pi > 1. The remaining 
parameters of solution (2.12) take the following values 

y=o, c= 
b(b-12)~a(a-12)k’ (2.15) 

12a 

Figure 1 shows the solution of (2.14) for a = -48, b = 15, k = 0.95 and ps = 2 (the continuous curve). 
At the second step we find two solutions that hold for arbitrary a. The first solution belongs to the 

first family of (2.13): 

u=A +kZ l-+chf3 
0 

-- 

2 shZe 
(2.16) 

This solution is a special case of solution (2.14) and can be obtained from expression (2.14) by making 
the replacement 8 -_j 8 + m/2. 

The second solution is from the third family of (2.13) 

k2 
u=A,+q-k2sxh28 (2.17) 

This is a one-parameter solution with parameter k. The parameters from (2.12) for this solution take 
the following values 

p=o, y=o, c= 
b(b-12)-16a(a-12)k’ (2.18) 

12a 

Fig. 1 
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Solution (2.17) with the re2placement 8 + 8 + in/2 is converted into a solution which differs from 
(2.17) in the replacement -k sech20 -_;, k2 cosech28. 

Note that, when a = 12, solutions (2.14) (2.16) and (2.17) correspond to waves propagating at a fixed 
velocity that is independent of the wave vector. 

Note also that, for the parameters of the equation a = 10 and a = -48, solutions of the form (2.12) 
exist that differ from those given above. 

In the case when a = 10 and u(u2 -1) f 0, and for values of the parameters 

_6-b+10k2 

60 
, P=-k'p. y=O 

(2.19) 

c= 
b(b-6)-40k4 

60 

the solution belonging to the third family of (2.13) can be written in the form 

6-b+10k2 k2 30 k4 
l4= 

60 -l*xche+b+20k’ (lfxch8)2 

where 

J b-10k2 
X= 

b+20k2 

(2.20) 

(2.21) 

For imaginary x, solution (2.20), after making the replacement 8 + 0 + h/2, x + ix takes a form which 
differs from (2.20) by the replacement of cht3 by she and by a change in the sign of the radicand in 
Eq. (2.21). 

When a = -48 and u(u2 - 1) f 0, solutions exist both from the first family of (2.13) and from the 
third family of (2.13). 

The first family of solutions of (2.13) is determined by the following values of the parameters 

u=&(b-2-50k2). y=fz szGF 

p=y-;k2p, c= $26 -21b2 +2450bk2 -69120k4) 

(2.22) 

and here the solutions in the real domain are only possible for two values of k. The first solution 
is 

u=- '+ 
496 5b k2 

---u, =- 
48 16704 696 

The second solution is 

(2.23) 

b &;-l+she b 
u=A,f- 

1 Ilb 

144 po +che --ii? 
A, =--+- 

48 3456 
(2.24) 

This is a one-parameter solution with parameter h, where ~20 > 1. Solution (2.24) when b = 15 and 
u. = 2 is shown in Fig. 1 by the dashed curve (the plus sign is selected). In (2.23) and (2.24), uis defined 
by expression (2.14). 

Note that solution (2.23) is a special case of solution (2.14), while solution (2.24) when 1-1 = 0 and 
with the replacement 8 + 8 + in2 is converted to 
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u=A,+ (2.25) 

The graph of this solution when b = 75 and x = 1 is represented in Fig. 2 by the continuous curve (the 
minus sign is selected). 

The group of solutions (2.22) contains a solution with k2 = b/48 that is different from those given 
above. However, this solution contains an imaginary part and is therefore not considered. 

The third family of solutions (2.13) for u = -48 and u(u* - 1) f 0 is determined by the following 
values of the parameters 

ol= 1+13k2 
-- p=o, y=o 

48 ’ 
(2.26) 

c=$(b+13bk2 
29 

-1728k4), u2 =%+-& 

The one-parameter solution with parameter k form this family has the form 

U- l+13k2 ; 420k' 1 

48 b+348k2 (1 +xch0)2 

where 

+ b-72k2 
x=- 

/-- b +348k2 

(2.27) 

(2.28) 

The graph of solution (2.27) with b = 75 and k = 1 is shown in Fig. 2 by the dashed curve (the plus 
sign is selected for x). 

In the case of imaginary x in (2.27) and (2.28) after making the replacement 9 + 9 + h/2, x + ix, 
we arrive at a solution that is obtained from (2.27) and (2.28) by replacing ch9 by she in (2.27) and by 
changing the sign of the radicand in (2.28). 

There is one further solution from the third family of (2.13) for a = -48, &.L* - 1) f 0 and y = 0. 
However, this solution can only be determined implicitly as the solution of the system of four equations 

-12k’ + bk* + 192k4 - 576k*a+ 12p2 -264k2Pp-420k4v2 =0 

2ck= -8k4 -32k6+2bk2a-3%4k4a+b~2+108k2~2+6k2~~+30k4~~+288k2a~~=O 

c-k2 -k4+ba-48k*a=O 

(2.29) 

Fig. 2 
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Whena = -48 and p = 0, the third family of solutions (2.13) is determined by the following values 
of the parameters 

a=&-2-2OOk2X p=o, y=* 
d5bk2 - 1392k’ 

2& 

c=--$26-21b2+9800bk2-1105920k’) 

One of the solutions belonging to this family has the form (k2 = b/288) 

u=A, fhth0--&sech20 

(2.30) 

(2.31) 

The family of solutions that is determined by the values of parameters (2.30) includes, besides (2.31), 
a solution with k2 = 56/1392 (a special case of solution (2.17)) and a solution with k2 = bll92,with an 
irremovable imaginary part. 

Solution (2.31) with the replacement 0 + 8 + i7d2 is converted into a solution which differs from 
(2.31) by the replacement of the and seche by cthe and coseche, respectively. 

Whena = -48andp = 0, the third family of solutions (2.13) is determined by the following values 
of the parameters 

a=-/-(b-2+148k2), p=+ 
d5bk2+696k4 y=. 

2& ’ 
(2.32) 

c = $26 -21b2 - 4900bk2 -270720k’) 

This family of solutions includes a solution with k2 = 
solution with k2 

-5b/696 (a special case of solution (2.17)), a 
= Ai, c = c+ and b c 0, which, after making the replacement 8 + 8 + ilJ2, reduces 

to the form 

u = AZ + A: cosech 8 + Ai cosech2 8 (2.33) 

and also a solution with k2 = A4, c = c- and b < 0 

u = A; f Ai sech 8 - A; sech2 8 (2.34) 

Here 

A+ 1158+(16lf37&i)b, A’ = Jmb 

55584 3 
2316 

A+ ‘Offib Cf= 

2316 ’ 

223494 + (46853 f 10825fi)b b 

10727712 

(2.35) 

The graph of solution (2.34) with b = -100 is shown in Fig. 3 by the continuous curve (the minus 
sign is selected). 

3. SOLUTIONS OF A NON-LINEAR FIFTH-ORDER 
DIFFERENTIAL EQUATION IN THE FORM OF 

KNOIDAL WAVES 

To find a solution of Eq. (2.3) in the form of a knoidal wave, the method described in earlier papers 
[30,31] is used. 

Integrating Eq. (2.3), written in travelling-wave variables, we obtain 
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u ~  -auu= + u= + 3  (a-20)u 2 - b u 2  - cu  + d = 0  (3.1) 

where d is the integration 
constant. 

The general solution of Eq. (3.1) has a second-order pole, and therefore we will seek a solution in 
the form 

u = ~ ( x ) + l ~  

where ot and [3 are constants, and R is the solution of the equation 

(3.2) 

Rax =4R 3 + fR 2 +gR+h (3.3) 

Substituting expression (3.2) into Eq. (3.1) and equating to zero coefficients of different powers of R(x), 
we obtain the following values of the parameters of the equation 

1 2 - b + a f  (12-b )b+a(12c+(a-12) f  2) 
o r = l ,  ~ =  , g =  

12a 12a(a - 12) 

1 
h = -432a2 ( a _ 12)2 [263(a - 6 ) -  36b(48 - 4a(l +2c - 3 f )  +a2(c - f ) )  

+b 2 (288 + 3 6 a ( f -  I ) -  3a2f) +a(a - 12) (36c(8 + af) + a(-288d + f3  (a - 12)))] 

where it is assumed that a ~ 12. In the case when a = 12, we find 

a = l ,  13 1 2 - b + 1 2 f  b (b -12)  
~ C ~ -  

144 144 
-24b 2 + b 3 + 41472d - 144bf 2 144b g =  

1728b 

Let  Ra < R2 < R3 be real and different roots of the equation corresponding to the vanishing of the 
right-hand side of Eq. (3.3). Then, Eq. (3.1) has a solution in the form of a knoidal wave 

(3.4) 
12a ~ ~ R 3 - R I ) 

The graph of this solution when a = -48, b = -100, f = -8, R1 = 0.9, R 2 = 1.36 and R 3 = 1.44 is 
represented in Fig. 3 by the dashed curve. 

Consider the limiting case R2 = R3. Then the solution of (3.4) takes the form 
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U= 
12-b+& 

12a 
+R, +(Rz - R, ) th2 ,/Rx (3.5) 

where R1 and R2 are defined in terms of the arbitrary parameters f and c. A solution of the form (3.5) 
has already been obtained. It is identical with (2.17). 

Thus, special solutions (2.14) and (2.17) of Eq. (2.3) have been found that hold for any values of 
a. For two values of a, additional special solutions have been obtained: (2.20) for a = 10 and (2.24), 
(2.27), (2.31), (2.33) and (2.34) f or a = -48. A solution (3.4) of the knoidal wave type has also been 
found. 
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